Sumber :
http://nugliztajulie.wordpress.com/2009/12/05/teknologi-yang-terkait-antar-muka-telematika/
http://jimyindrabascian.blogspot.com/2009/12/teknologi-yang-terkait-antar-muka.html
1. Jelaskan teknologi yang
terkait antarmuka!
a. Head-Up Displays Systems
Sebuah head-up display, atau disingkat HUD, adalah setiap tampilan yang transparan menyajikan data tanpa memerlukan pengguna untuk melihat diri dari sudut pandang atau yang biasa. Asal usul nama berasal dari pengguna bisa melihat informasi dengan kepala "naik" dan melihat ke depan, bukan memandang miring ke instrumen yang lebih rendah.
Meskipun mereka pada awalnya dikembangkan untuk penerbangan militer, HUDs sekarang digunakan dalam pesawat komersial, mobil, dan aplikasi lainnya.
HUDs pertama pada dasarnya statis kemajuan teknologi pemitar pesawat tempur militer. Rudimenter HUDs hanya diproyeksikan sebuah "pipper" untuk bantuan senjata pesawat tujuan. Sebagai HUDs maju, lebih (dan lebih kompleks) informasi yang telah ditambahkan. HUDs segera ditampilkan meriam dihitung solusi, dengan menggunakan informasi pesawat seperti kecepatan dan sudut serangan, sehingga sangat meningkatkan akurasi pilot bisa mencapai di udara untuk pertempuran udara. Sebuah contoh awal dari apa yang sekarang dapat disebut sebagai head-up layar adalah Sistem Proyektor AI Inggris Mrk VIII radar pencegatan udara dipasang ke beberapa de Havilland Mosquito pejuang malam, di mana layar radar diproyeksikan ke kaca depan pesawat buatan bersama cakrawala, memungkinkan pilot untuk melakukan penangkapan tanpa mengalihkan pandangan dari kaca depan.
Pada bulan Juni 1952, Royal Navy dirilis NA.39 Kebutuhan Staf Angkatan Laut menyerukan pemogokan carrier-borne pesawat dengan jangkauan besar yang mampu membawa senjata nuklir di bawah radar musuh musuh cover dan mencolok pengiriman atau pelabuhan. Blackburn Pesawat memenangkan tender untuk memproduksi desain mereka yang menjadi Buccaneer. Buccaneer prototipe yang pertama terbang pada tanggal 30 April 1958. Spesifikasi pesawat menyerukan Penglihatan Attack navigasi dan senjata memberikan informasi rilis untuk modus serangan tingkat rendah. Ada persaingan sengit antara pendukung HUD baru desain dan elektro-mekanis akrab dengan HUD Gunsight dikutip sebagai pilihan bodoh bahkan radikal. Lengan Air cabang disponsori Departemen pengembangan suatu Strike Penglihatan. The Royal Aircraft Establishment (RAE) merancang peralatan dan itu dibangun oleh Cintel dan sistem terpadu pertama kali pada tahun 1958. HUD Cintel bisnis yang diambil alih oleh Elliott Penerbangan Otomasi dan HUD Buccaneer diproduksi dan dikembangkan lebih lanjut terus sampai versi Mark III dengan total 375 sistem dibuat; itu diberi `cocok dan melupakan 'title oleh Royal Navy dan masih dalam jangkauan layanan hampir 25 tahun kemudian. BAE Systems dengan demikian memiliki klaim pertama di dunia Head Up Display layanan operasional.
Di Britania Raya, itu segera dicatat bahwa pilot terbang dengan pemandangan senapan baru itu menjadi lebih baik dalam mengemudikan pesawat mereka. Pada titik ini, HUD memperluas penggunaan senjata di luar instrumen yang bertujuan menjadi alat piloting. Pada tahun 1960, Perancis Gilbert test pilot Klopfstein menciptakan HUD modern pertama, dan sistem standar HUD simbol-simbol sehingga pilot hanya akan belajar satu sistem dan dapat lebih mudah transisi antara pesawat. 1975 melihat perkembangan HUD modern untuk digunakan dalam peraturan penerbangan instrumen pendekatan untuk mendarat. Klopfstein memelopori teknologi HUD militer jet tempur dan helikopter, bertujuan untuk mensentralisasi data penerbangan kritis dalam bidang pilot visi. Pendekatan ini berusaha untuk meningkatkan efisiensi scan pilot dan mengurangi "kejenuhan tugas" dan informasi yang berlebihan. Pada 1970-an, HUD diperkenalkan untuk penerbangan komersial.
Pada tahun 1988, Oldsmobile Cutlass Supreme menjadi mobil produksi pertama dengan head-up display.
Sampai beberapa tahun yang lalu, Embraer 190 dan Boeing 737 New Generation Aircraft (737-600,700,800, dan 900 series) adalah satu-satunya pesawat penumpang komersial untuk datang dengan HUD opsional. Sekarang, bagaimanapun, teknologi ini menjadi lebih umum dengan pesawat seperti Canadair RJ, Airbus A318 dan beberapa jet bisnis yang menampilkan perangkat. HUD telah menjadi peralatan standar Boeing 787. Lebih jauh lagi, Airbus A320, A330, A340 dan A380 keluarga yang sedang menjalani proses sertifikasi untuk HUD.
Sebuah head-up display, atau disingkat HUD, adalah setiap tampilan yang transparan menyajikan data tanpa memerlukan pengguna untuk melihat diri dari sudut pandang atau yang biasa. Asal usul nama berasal dari pengguna bisa melihat informasi dengan kepala "naik" dan melihat ke depan, bukan memandang miring ke instrumen yang lebih rendah.
Meskipun mereka pada awalnya dikembangkan untuk penerbangan militer, HUDs sekarang digunakan dalam pesawat komersial, mobil, dan aplikasi lainnya.
HUDs pertama pada dasarnya statis kemajuan teknologi pemitar pesawat tempur militer. Rudimenter HUDs hanya diproyeksikan sebuah "pipper" untuk bantuan senjata pesawat tujuan. Sebagai HUDs maju, lebih (dan lebih kompleks) informasi yang telah ditambahkan. HUDs segera ditampilkan meriam dihitung solusi, dengan menggunakan informasi pesawat seperti kecepatan dan sudut serangan, sehingga sangat meningkatkan akurasi pilot bisa mencapai di udara untuk pertempuran udara. Sebuah contoh awal dari apa yang sekarang dapat disebut sebagai head-up layar adalah Sistem Proyektor AI Inggris Mrk VIII radar pencegatan udara dipasang ke beberapa de Havilland Mosquito pejuang malam, di mana layar radar diproyeksikan ke kaca depan pesawat buatan bersama cakrawala, memungkinkan pilot untuk melakukan penangkapan tanpa mengalihkan pandangan dari kaca depan.
Pada bulan Juni 1952, Royal Navy dirilis NA.39 Kebutuhan Staf Angkatan Laut menyerukan pemogokan carrier-borne pesawat dengan jangkauan besar yang mampu membawa senjata nuklir di bawah radar musuh musuh cover dan mencolok pengiriman atau pelabuhan. Blackburn Pesawat memenangkan tender untuk memproduksi desain mereka yang menjadi Buccaneer. Buccaneer prototipe yang pertama terbang pada tanggal 30 April 1958. Spesifikasi pesawat menyerukan Penglihatan Attack navigasi dan senjata memberikan informasi rilis untuk modus serangan tingkat rendah. Ada persaingan sengit antara pendukung HUD baru desain dan elektro-mekanis akrab dengan HUD Gunsight dikutip sebagai pilihan bodoh bahkan radikal. Lengan Air cabang disponsori Departemen pengembangan suatu Strike Penglihatan. The Royal Aircraft Establishment (RAE) merancang peralatan dan itu dibangun oleh Cintel dan sistem terpadu pertama kali pada tahun 1958. HUD Cintel bisnis yang diambil alih oleh Elliott Penerbangan Otomasi dan HUD Buccaneer diproduksi dan dikembangkan lebih lanjut terus sampai versi Mark III dengan total 375 sistem dibuat; itu diberi `cocok dan melupakan 'title oleh Royal Navy dan masih dalam jangkauan layanan hampir 25 tahun kemudian. BAE Systems dengan demikian memiliki klaim pertama di dunia Head Up Display layanan operasional.
Di Britania Raya, itu segera dicatat bahwa pilot terbang dengan pemandangan senapan baru itu menjadi lebih baik dalam mengemudikan pesawat mereka. Pada titik ini, HUD memperluas penggunaan senjata di luar instrumen yang bertujuan menjadi alat piloting. Pada tahun 1960, Perancis Gilbert test pilot Klopfstein menciptakan HUD modern pertama, dan sistem standar HUD simbol-simbol sehingga pilot hanya akan belajar satu sistem dan dapat lebih mudah transisi antara pesawat. 1975 melihat perkembangan HUD modern untuk digunakan dalam peraturan penerbangan instrumen pendekatan untuk mendarat. Klopfstein memelopori teknologi HUD militer jet tempur dan helikopter, bertujuan untuk mensentralisasi data penerbangan kritis dalam bidang pilot visi. Pendekatan ini berusaha untuk meningkatkan efisiensi scan pilot dan mengurangi "kejenuhan tugas" dan informasi yang berlebihan. Pada 1970-an, HUD diperkenalkan untuk penerbangan komersial.
Pada tahun 1988, Oldsmobile Cutlass Supreme menjadi mobil produksi pertama dengan head-up display.
Sampai beberapa tahun yang lalu, Embraer 190 dan Boeing 737 New Generation Aircraft (737-600,700,800, dan 900 series) adalah satu-satunya pesawat penumpang komersial untuk datang dengan HUD opsional. Sekarang, bagaimanapun, teknologi ini menjadi lebih umum dengan pesawat seperti Canadair RJ, Airbus A318 dan beberapa jet bisnis yang menampilkan perangkat. HUD telah menjadi peralatan standar Boeing 787. Lebih jauh lagi, Airbus A320, A330, A340 dan A380 keluarga yang sedang menjalani proses sertifikasi untuk HUD.
Jenis
Ada dua jenis HUD. Sebuah HUD tetap mengharuskan pengguna untuk melihat melalui elemen layar terikat pada badan pesawat atau kendaraan chasis. Sistem menentukan gambar yang akan disajikan semata-mata tergantung pada orientasi kendaraan. Kebanyakan pesawat HUDs adalah tetap.
Helm dipasang menampilkan (HMD) secara teknis bentuk HUD, perbedaan adalah bahwa mereka menampilkan elemen tampilan yang bergerak dengan orientasi kepala pengguna relatif badan pesawat.
Banyak pesawat tempur modern (seperti F/A-18, F-22, Eurofighter) menggunakan kedua yang HUD dan HMD secara bersamaan. F-35 Lightning II dirancang tanpa HUD, dengan mengandalkan semata-mata pada HMD, sehingga modern pertama tempur militer untuk tidak memiliki HUD tetap.
Generasi
HUDs terbagi menjadi 3 generasi yang mencerminkan teknologi yang digunakan untuk menghasilkan gambar.
a. Generasi Pertama - Gunakan CRT untuk menghasilkan sebuah gambar pada layar
fosfor, memiliki kelemahan dari degradasi dari waktu ke waktu dari lapisan
layar fosfor. Mayoritas HUDs beroperasi saat ini adalah dari jenis ini.
b. Generasi Kedua - Gunakan sumber cahaya padat, misalnya LED, yang dimodulasi
oleh sebuah layar LCD untuk menampilkan gambar. Ini menghilangkan memudar
dengan waktu dan juga tegangan tinggi yang dibutuhkan untuk sistem generasi
pertama. Sistem ini pada pesawat komersial.
c. Generasi Ketiga - Gunakan waveguides optik untuk menghasilkan gambar secara
langsung dalam Combiner daripada menggunakan sistem proyeksi.
Faktor-faktor
Ada beberapa faktor yang insinyur harus dipertimbangkan ketika merancang sebuah HUD:
Faktor-faktor
Ada beberapa faktor yang insinyur harus dipertimbangkan ketika merancang sebuah HUD:
a.
Bidang penglihatan - Karena mata seseorang
berada di dua titik berbeda, mereka melihat dua gambar yang berbeda. Untuk
mencegah mata seseorang dari keharusan untuk mengubah fokus antara dunia luar
dan layar HUD, layar adalah "Collimated" (difokuskan pada tak
terhingga). Dalam tampilan mobil umumnya terfokus di sekitar jarak ke bemper.
b.
Eyebox - menampilkan hanya dapat
dilihat sementara mata pemirsa dalam 3-dimensi suatu daerah yang disebut Kepala
Motion Kotak atau "Eyebox". HUD Eyeboxes modern biasanya sekitar 5
dengan 3 dari 6 inci. Hal ini memungkinkan pemirsa beberapa kebebasan gerakan
kepala. Hal ini juga memungkinkan pilot kemampuan untuk melihat seluruh
tampilan selama salah satu mata adalah di dalam Eyebox.
c.
Terang / kontras - harus
menampilkan pencahayaan yang diatur dalam dan kontras untuk memperhitungkan
pencahayaan sekitarnya, yang dapat sangat bervariasi (misalnya, dari cahaya
terang awan malam tak berbulan pendekatan minimal bidang menyala).
d.
Menampilkan akurasi - HUD
komponen pesawat harus sangat tepat sesuai dengan pesawat tiga sumbu - sebuah
proses yang disebut boresighting - sehingga data yang ditampilkan sesuai dengan
kenyataan biasanya dengan akurasi ± 7,0 milliradians. Perhatikan bahwa dalam
kasus ini kata "menyesuaikan diri" berarti, "ketika suatu benda
diproyeksikan di Combiner dan objek yang sebenarnya terlihat, mereka akan
selaras". Hal ini memungkinkan layar untuk menunjukkan pilot persis di
mana cakrawala buatan, serta proyeksi pesawat jalan dengan akurasi besar.
Ketika Enhanced Visi digunakan, misalnya, tampilan lampu landasan harus selaras
dengan lampu landasan yang sebenarnya ketika lampu nyata terlihat. Boresighting
dilakukan selama proses pembangunan pesawat dan dapat juga dilakukan di
lapangan pada banyak pesawat terbang. Lebih baru mikro-tampilan teknologi
pencitraan sedang diperkenalkan, termasuk liquid crystal display (LCD), liquid
crystal on silicon (LCoS), digital mikro-cermin (DMD), dan organik Dioda cahaya
(OLED).
e.
Instalasi - instalasi dari
komponen HUD harus kompatibel dengan avionik lain, menampilkan, dll
Komponen
HUD tipikal mengandung tiga komponen utama: Sebuah Kombinasi, para Projector Unit, dan video komputer generasi.
The Combiner adalah bagian dari unit yang terletak tepat di depan pilot. Ini adalah ke permukaan yang informasi diproyeksikan sehingga pilot dapat melihat dan menggunakannya. Pada beberapa pesawat yang Combiner cekung dalam bentuk dan pada orang lain itu adalah datar. Ini memiliki lapisan khusus yang mencerminkan cahaya monokromatik diproyeksikan dari Unit Projector sementara memungkinkan semua panjang gelombang cahaya yang lain melewatinya. Pada beberapa pesawat itu adalah mudah dipindah-pindah (atau dapat diputar keluar dari jalan) oleh aircrew.
Unit Proyeksi proyek yang gambar ke Combiner untuk pilot untuk melihat. Pada awal HUDs, ini dilakukan melalui pembiasan, meskipun menggunakan refleksi HUDs modern. Unit proyeksi menggunakan Katoda Ray Tube, Dioda cahaya, atau layar kristal cair untuk memproyeksikan gambar. Unit proyeksi dapat berupa di bawah ini (seperti kebanyakan pesawat tempur) atau di atas (seperti dengan transportasi / pesawat komersial) yang Combiner.
Komputer ini biasanya terletak dengan peralatan avionik lain dan menyediakan antarmuka antara HUD (yaitu proyeksi unit) dan sistem / data yang akan ditampilkan. Pada pesawat, komputer ini biasanya dual sistem berlebihan independen. Mereka menerima input langsung dari sensor (PITOT-statis, gyroscopic, navigasi, dll) naik pesawat dan melakukan perhitungan mereka sendiri dan bukan dihitung sebelumnya menerima data dari komputer penerbangan. Komputer yang terintegrasi dengan sistem pesawat dan memungkinkan konektivitas ke beberapa bus data yang berbeda seperti ARINC 429, ARINC 629, dan MIL-STD-1553.
Simbol dan data lain juga tersedia di beberapa HUDs:
Komponen
HUD tipikal mengandung tiga komponen utama: Sebuah Kombinasi, para Projector Unit, dan video komputer generasi.
The Combiner adalah bagian dari unit yang terletak tepat di depan pilot. Ini adalah ke permukaan yang informasi diproyeksikan sehingga pilot dapat melihat dan menggunakannya. Pada beberapa pesawat yang Combiner cekung dalam bentuk dan pada orang lain itu adalah datar. Ini memiliki lapisan khusus yang mencerminkan cahaya monokromatik diproyeksikan dari Unit Projector sementara memungkinkan semua panjang gelombang cahaya yang lain melewatinya. Pada beberapa pesawat itu adalah mudah dipindah-pindah (atau dapat diputar keluar dari jalan) oleh aircrew.
Unit Proyeksi proyek yang gambar ke Combiner untuk pilot untuk melihat. Pada awal HUDs, ini dilakukan melalui pembiasan, meskipun menggunakan refleksi HUDs modern. Unit proyeksi menggunakan Katoda Ray Tube, Dioda cahaya, atau layar kristal cair untuk memproyeksikan gambar. Unit proyeksi dapat berupa di bawah ini (seperti kebanyakan pesawat tempur) atau di atas (seperti dengan transportasi / pesawat komersial) yang Combiner.
Komputer ini biasanya terletak dengan peralatan avionik lain dan menyediakan antarmuka antara HUD (yaitu proyeksi unit) dan sistem / data yang akan ditampilkan. Pada pesawat, komputer ini biasanya dual sistem berlebihan independen. Mereka menerima input langsung dari sensor (PITOT-statis, gyroscopic, navigasi, dll) naik pesawat dan melakukan perhitungan mereka sendiri dan bukan dihitung sebelumnya menerima data dari komputer penerbangan. Komputer yang terintegrasi dengan sistem pesawat dan memungkinkan konektivitas ke beberapa bus data yang berbeda seperti ARINC 429, ARINC 629, dan MIL-STD-1553.
Simbol dan data lain juga tersedia di beberapa HUDs:
a.
Boresight atau simbol waterline -
adalah tetap pada layar dan menunjukkan di mana hidung pesawat sebenarnya
berada.
b.
Flight Path Vector (FPV) atau
simbol vektor kecepatan - menunjukkan di mana pesawat ini benar-benar terjadi,
jumlah dari semua gaya yang bekerja pada pesawat. Sebagai contoh, jika pesawat
ini bernada up tetapi kehilangan energi, maka FPV simbol akan berada di bawah
cakrawala meskipun simbol boresight berada di atas cakrawala. Selama pendekatan
dan pendaratan, pilot dapat terbang pendekatan dengan menjaga simbol di FPV
keturunan yang dikehendaki sudut dan titik touchdown di landasan.
c.
Percepatan energi indikator atau
isyarat - biasanya ke kiri dari FPV simbol, maka di atasnya jika pesawat
mengalami percepatan, dan di bawah simbol FPV jika perlambatan.
d.
Sudut serangan indikator -
menunjukkan sudut sayap relatif terhadap airmass, sering ditampilkan sebagai
"α".
e.
Data dan simbol-simbol navigasi -
untuk pendekatan dan pendaratan, sistem pemandu penerbangan dapat memberikan
isyarat visual didasarkan pada alat bantu navigasi seperti Instrument Landing
System atau ditambah Global Positioning System seperti Wide Area Augmentation
System. Biasanya ini adalah sebuah lingkaran yang cocok di dalam jalur
penerbangan vektor simbol. Dengan "terbang ke" bimbingan isyarat,
pilot pesawat terbang di sepanjang jalur penerbangan yang benar.
Sejak diperkenalkan pada HUDs, baik simbol FPV dan percepatan standar menjadi kepala di bawah menampilkan (HDD). Bentuk yang sebenarnya dari simbol pada FPV HDD tidak standar, tetapi biasanya merupakan gambar pesawat sederhana, seperti sebuah lingkaran dengan dua garis miring pendek, (180 ± 30 derajat) dan "sayap" pada ujung garis menurun. Menjaga FPV di cakrawala memungkinkan pilot untuk tingkat terbang bergantian di berbagai sudut bank.
Sejak diperkenalkan pada HUDs, baik simbol FPV dan percepatan standar menjadi kepala di bawah menampilkan (HDD). Bentuk yang sebenarnya dari simbol pada FPV HDD tidak standar, tetapi biasanya merupakan gambar pesawat sederhana, seperti sebuah lingkaran dengan dua garis miring pendek, (180 ± 30 derajat) dan "sayap" pada ujung garis menurun. Menjaga FPV di cakrawala memungkinkan pilot untuk tingkat terbang bergantian di berbagai sudut bank.
b. Tangible User Interface
Sebuah Tangible User Interface (TUI) adalah sebuah antarmuka pengguna di
mana orang berinteraksi dengan informasi digital melalui lingkungan fisik. Nama
awal Graspable User Interface, yang tidak lagi digunakan.
Salah satu pelopor dalam antarmuka pengguna nyata adalah Hiroshi Ishii, seorang profesor di MIT Media Laboratory yang mengepalai Berwujud Media Group. Pada visi-Nya nyata UIS, disebut Berwujud Bits, adalah memberikan bentuk fisik ke informasi digital, membuat bit secara langsung dimanipulasi dan terlihat. Bit nyata mengejar seamless coupling antara dua dunia yang sangat berbeda dari bit dan atom.
Karakteristik Berwujud User Interfaces :
Salah satu pelopor dalam antarmuka pengguna nyata adalah Hiroshi Ishii, seorang profesor di MIT Media Laboratory yang mengepalai Berwujud Media Group. Pada visi-Nya nyata UIS, disebut Berwujud Bits, adalah memberikan bentuk fisik ke informasi digital, membuat bit secara langsung dimanipulasi dan terlihat. Bit nyata mengejar seamless coupling antara dua dunia yang sangat berbeda dari bit dan atom.
Karakteristik Berwujud User Interfaces :
1.
Representasi fisik digabungkan
untuk mendasari komputasi informasi digital.
2.
Representasi fisik mewujudkan mekanisme
kontrol interaktif.
3.
Representasi fisik perseptual
digabungkan untuk secara aktif ditengahi representasi digital.
4.
Keadaan fisik terlihat
"mewujudkan aspek kunci dari negara digital dari sebuah sistem.
Contoh :
Sebuah contoh nyata adalah Marmer UI Answering Machine oleh Durrell Uskup (1992). Sebuah kelereng mewakili satu pesan yang ditinggalkan di mesin penjawab. Menjatuhkan marmer ke piring diputar kembali pesan atau panggilan terkait kembali pemanggil.
Contoh lain adalah sistem Topobo. Balok-balok dalam LEGO Topobo seperti blok yang dapat bentak bersama, tetapi juga dapat bergerak sendiri menggunakan komponen bermotor. Seseorang bisa mendorong, menarik, dan memutar blok tersebut, dan blok dapat menghafal gerakan-gerakan ini dan replay mereka.
Pelaksanaan lain memungkinkan pengguna untuk membuat sketsa gambar di atas meja sistem dengan pena yang benar-benar nyata. Menggunakan gerakan tangan, pengguna dapat mengkloning gambar dan peregangan dalam sumbu X dan Y akan hanya sebagai salah satu program dalam cat. Sistem ini akan mengintegrasikan kamera video dengan gerakan sistem pengakuan.
Contoh lain adalah logat, pelaksanaan TUI membantu membuat produk ini lebih mudah diakses oleh pengguna tua produk. 'teman' lewat juga dapat digunakan untuk mengaktifkan interaksi yang berbeda dengan produk.
Beberapa pendekatan telah dilakukan untuk membangun middleware untuk TUI generik. Mereka sasaran menuju kemerdekaan aplikasi domain serta fleksibilitas dalam hal teknologi sensor yang digunakan. Sebagai contoh, Siftables menyediakan sebuah platform aplikasi yang sensitif menampilkan gerakan kecil bertindak bersama-sama untuk membentuk antarmuka manusia-komputer.
Dukungan kerjasama TUIs harus mengizinkan distribusi spasial, kegiatan asynchronous, dan modifikasi yang dinamis, TUI infrastruktur, untuk nama yang paling menonjol. Pendekatan ini menyajikan suatu kerangka kerja yang didasarkan pada konsep ruang tupel LINDA untuk memenuhi persyaratan ini. Kerangka kerja yang dilaksanakan TUI untuk menyebarkan teknologi sensor pada semua jenis aplikasi dan aktuator dalam lingkungan terdistribusi.
Contoh :
Sebuah contoh nyata adalah Marmer UI Answering Machine oleh Durrell Uskup (1992). Sebuah kelereng mewakili satu pesan yang ditinggalkan di mesin penjawab. Menjatuhkan marmer ke piring diputar kembali pesan atau panggilan terkait kembali pemanggil.
Contoh lain adalah sistem Topobo. Balok-balok dalam LEGO Topobo seperti blok yang dapat bentak bersama, tetapi juga dapat bergerak sendiri menggunakan komponen bermotor. Seseorang bisa mendorong, menarik, dan memutar blok tersebut, dan blok dapat menghafal gerakan-gerakan ini dan replay mereka.
Pelaksanaan lain memungkinkan pengguna untuk membuat sketsa gambar di atas meja sistem dengan pena yang benar-benar nyata. Menggunakan gerakan tangan, pengguna dapat mengkloning gambar dan peregangan dalam sumbu X dan Y akan hanya sebagai salah satu program dalam cat. Sistem ini akan mengintegrasikan kamera video dengan gerakan sistem pengakuan.
Contoh lain adalah logat, pelaksanaan TUI membantu membuat produk ini lebih mudah diakses oleh pengguna tua produk. 'teman' lewat juga dapat digunakan untuk mengaktifkan interaksi yang berbeda dengan produk.
Beberapa pendekatan telah dilakukan untuk membangun middleware untuk TUI generik. Mereka sasaran menuju kemerdekaan aplikasi domain serta fleksibilitas dalam hal teknologi sensor yang digunakan. Sebagai contoh, Siftables menyediakan sebuah platform aplikasi yang sensitif menampilkan gerakan kecil bertindak bersama-sama untuk membentuk antarmuka manusia-komputer.
Dukungan kerjasama TUIs harus mengizinkan distribusi spasial, kegiatan asynchronous, dan modifikasi yang dinamis, TUI infrastruktur, untuk nama yang paling menonjol. Pendekatan ini menyajikan suatu kerangka kerja yang didasarkan pada konsep ruang tupel LINDA untuk memenuhi persyaratan ini. Kerangka kerja yang dilaksanakan TUI untuk menyebarkan teknologi sensor pada semua jenis aplikasi dan aktuator dalam lingkungan terdistribusi.
c. Computer Vision
Computer Vision (Komputer Visi) merupakan ilmu
pengetahuan dan teknologi dari mesin yang melihat. Sebagai suatu disiplin ilmu,
Computer Vision berhubungan dengan teori untuk membangun sistem buatan yang
memperoleh informasi dari gambar. dengan teori yang digunakan untuk membangun
sistem kecerdasan buatan yang membutuhkan informasi dari citra (gambar). Data
citranya dapat dalam berbagai bentuk, misalnya urutan video, pandangan dari
beberapa kamera, data multi dimensi yang di dapat dari hasil pemindaian medis.
Sebagai teknologi
disiplin, visi komputer berusaha untuk menerapkan teori dan model untuk
pembangunan sistem visi komputer. Contoh aplikasi visi komputer mencakup sistem
untuk :
Pengendalian proses
(misalnya, sebuah robot industri atau kendaraan otonom).
Mendeteksi peristiwa (misalnya, untuk pengawasan visual atau orang menghitung).
Mengorganisir informasi (misalnya, untuk pengindeksan database foto dan gambar urutan).
Modeling benda atau lingkungan (misalnya, industri inspeksi, analisis gambar medis atau topografis model).
Interaksi (misalnya, sebagai input ke perangkat untuk interaksi manusia komputer).
Visi komputer juga dapat digambarkan sebagai pelengkap (tapi tidak harus lawan) penglihatan biologis.
Mendeteksi peristiwa (misalnya, untuk pengawasan visual atau orang menghitung).
Mengorganisir informasi (misalnya, untuk pengindeksan database foto dan gambar urutan).
Modeling benda atau lingkungan (misalnya, industri inspeksi, analisis gambar medis atau topografis model).
Interaksi (misalnya, sebagai input ke perangkat untuk interaksi manusia komputer).
Visi komputer juga dapat digambarkan sebagai pelengkap (tapi tidak harus lawan) penglihatan biologis.
Biologis visi,
persepsi visual manusia dan berbagai hewan yang dipelajari, sehingga dalam
model tentang bagaimana sistem ini beroperasi dalam hal proses-proses
fisiologis. Komputer visi di sisi lain, menjelaskan sistem penglihatan buatan
yang diimplementasikan dalam perangkat lunak dan perangkat keras.
Interdisipliner pertukaran antara biologis dan visi komputer telah terbukti
semakin bermanfaat bagi kedua bidang.
Sub-domain visi komputer meliputi adegan rekonstruksi, acara deteksi, pelacakan video, pengenalan obyek, belajar, pengindeksan, gerak estimasi, dan gambar restorasi.
Sub-domain visi komputer meliputi adegan rekonstruksi, acara deteksi, pelacakan video, pengenalan obyek, belajar, pengindeksan, gerak estimasi, dan gambar restorasi.
d. Browsing Audio Data
Browsing Audio Data merupakan metode browsing jaringan
yang digunakan untuk browsing video / audio data yang ditangkap oleh sebuah IP
kamera. Jaringan video / audio metode browsing mencakupi langkah-langkah
sebagai berikut :
Menjalankan sebuah program aplikasi komputer lokal untuk
mendapatkan kode identifikasi yang disimpan dalam kamera IP
Transmisi untuk mendaftarkan kode identifikasi ke DDNS ( Dynamic Domain Name Server) oleh program aplikasi
Mendapatkan kamera IP pribadi alamat dan alamat server pribadi sehingga pasangan IP kamera dan kontrol kamera IP melalui kamera IP pribadi alamat dan alamat server pribadi
compile ke layanan server melalui alamat server pribadi sehingga untuk mendapatkan video / audio data yang ditangkap oleh kamera IP, dimana server layanan menangkap video / audio data melalui Internet.
Transmisi untuk mendaftarkan kode identifikasi ke DDNS ( Dynamic Domain Name Server) oleh program aplikasi
Mendapatkan kamera IP pribadi alamat dan alamat server pribadi sehingga pasangan IP kamera dan kontrol kamera IP melalui kamera IP pribadi alamat dan alamat server pribadi
compile ke layanan server melalui alamat server pribadi sehingga untuk mendapatkan video / audio data yang ditangkap oleh kamera IP, dimana server layanan menangkap video / audio data melalui Internet.
e. Speech Recognition
Dikenal dengan pengenal suara otomatis (automatic
speech recognition) atau pengenal suara komputer (computer speech recognition)
merupakan suatu sistem yang dapat mengidentifikasi seseorang dari suara dimana
merubah suara menjadi tulisan. Istilah ‘voice recognition’ digunakan untuk
mengenali atau mengidentifikasi siapa yang berbicara, sedangkan istilah ‘Speech
Recognition’ digunakan untuk mengidentifikasi apa yang diucapkannya.
f. Speech Synthesis
Speech synthesis merupakan hasil kecerdasan buatan
dari pembicaraan manusia. Komputer yang digunakan untuk tujuan ini disebut
speech syhthesizer dan dapat diterapkan pada perangkat lunak dan perangkat
keras. Sebuah sistem text to speech (TTS) merubah bahasa normal menjadi
pembicaraan.
Tidak ada komentar:
Posting Komentar